
63

Chapter 8 Customization

Customization, one of the SELF compiler’s main techniques, provides much of the type information enabling compile-

time message lookup and inlining. This chapter describes customization and discusses important related issues.

8.1 Customization

Programmers using object-oriented languages receive much of their expressive power by applying inheritance to

organize code, factoring common fragments of code out into shared ancestors. In many cases, the factored code must

be parameterized by specific information available to the inheriting objects or subclasses. The factored code can gain

access to the specific information by sending a message to self and relying on the inheriting objects or subclasses to

provide specific implementations of the message that take care of the more specific computation. For example, the

point print example presented in section 4.6 uses sends to self to access behavior specific to either cartesian or

polar points:

Sending the x and y messages to (implicit) self allows the single print method to work for both kinds of points,

irrespective of how they actually implement the x and y messages.

Most object-oriented systems generate one compiled-code method for each source-code method. The single compiled

method must be general enough to handle all possible receiver types that might inherit the single source method. In

particular, a send to self must be implemented as full dynamically-bound messages, since different inheriting objects

will provide different implementations of the message. This implementation architecture places well-factored object-

oriented code at a performance disadvantage relative to less-well-factored code.

. . .

. . .

parent*
rho

theta
rho:

theta: ←

3
180
←

parent*
rho

theta
rho:

theta:

print
+ arg

parent*

parent*
x
y

x:
y: ←

7
9.2
←

parent*
x
y

x:
y:

. . .

. . .

clone . . .

a cartesian point a polar point

cartesian point traits polar point traits

point traits

general traits

rho * theta cos
rho * theta sin

(x*x + y*y) sqrt
(y / x) arctan

x print. ’@’ print. y print
(clone x: x + arg x) y: y + arg y

parent*
x
y

x:
y: ←

3
4

←

a cartesian point

parent*
rho

theta
rho:

theta: ←

2.5
60
←

a polar point

64

The SELF compiler avoids penalizing well-factored code by compiling a separate version of a source-code method for

each receiver type (i.e., each receiver map) on which the method is invoked. Each version is invoked only for receivers

with a particular map. Within the method, the compiler knows the precise type of self (the single receiver map for

self) and therefore can perform compile-time message lookup and inlining for all sends to self. For example, in

the point print example, the compiler generates one compiled version of print for cartesian point receivers and

another compiled version for polar point receivers.

Within each version, the type of self is known statically, and the x and y messages can be statically bound to target

methods and inlined.

Since in SELF many common messages are sent to self, including instance variable accesses, global variable

accesses, and some control structures, this extra type information makes a huge difference in the performance of SELF

programs; as shown in section 14.3, without customization SELF would run an average of 3 times slower.

Customization completely overcomes the apparent performance disadvantage of accessing instance variables and

global variables via messages as in SELF rather than special restrictive linguistic constructs as in Smalltalk and most

other languages.

8.2 Customization and Dynamic Compilation

Customization potentially could lead to an explosion in compiled code space consumption. If a single source method

were inherited by many different receiver types, it could be compiled and customized many different ways.

Fortunately, this potential space explosion can be controlled in most cases by integrating customization with the

dynamic compilation strategy used by the Deutsch-Schiffman Smalltalk-80 system, described in section 3.1.2.

As described in section 6.2, SELF source code is first parsed into byte code objects; no compilation takes place until

run-time. When a method is first invoked, the compiler generates code for that method based on the byte-coded pre-

parsed description of the source code. The compiler stores the resulting generated code in a cache (called the compiled

code cache) and finally jumps to the generated code to execute the method.

The Deutsch-Schiffman Smalltalk-80 system generates a single compiled method for each executed source method. In

the SELF compiler, dynamic compilation is integrated with customization: a method is custom-compiled only when

first invoked with a particular receiver map. This approach usually limits the code explosion potentially created by

customization, since instead of customizing for every inheriting receiver type, the system only customizes for those

inheriting receiver types currently being manipulated as part of the user’s “working set” of programs. Section 8.6

describes some pathological cases where dynamic customized compilation is still too wasteful of compiled code space,

however, and suggests some approaches for handling these rare situations.

8.2.1 Impact of Dynamic Compilation

Dynamic compilation has a marked effect on the flavor of the system. Dynamic compilation is naturally incremental,

enabling an effective programming environment. Turnaround time for programming changes can be short, since only

code that needs to be executed must be compiled after a change, and only code affected by the change need be

recompiled at all.

With dynamic compilation, compilation speed becomes much more important. Most programmers are unwilling to

accept lengthy compilation pauses interleaved with the execution of their programs, even if the total compile time with

point +
source code

customize customize

compiled code
point +

(cartesian point version)

compiled code
point +

(polar point version)

65

the dynamic compilation system is less than with a traditional batch compilation system. Ideally, programmers should

be unaware of compilation entirely, implying that each compilation or series of compilations should take only a second

or two in a long-running non-interactive program or small fraction of a second in an interactive program or a program

with real-time needs such as an animation play-back program. Traditional batch compilers, especially optimizers,

normally do not labor under such compilation speed restrictions, probably because users do not expect compilation to

be fast or unnoticeable. In a sense, dynamic compilation has created this problem by raising the level of expectation

of users. The SELF compiler thus takes special pains to reduce compilation time, such as lazy compilation of

uncommon branches as described later in section 10.5.

8.2.2 Compiled Code Cache

Dynamic compilation systems require that both the compiler and all the source code for the system be available at run-

time (although possibly in a compact form, like the SELF byte code objects). These needs seem to imply that a

dynamically compiled system will take up more space at run-time than a corresponding statically-compiled system.

However, in both our SELF system and in the Deutsch-Schiffman Smalltalk-80 system, the dynamically-compiled

code is cached in a fixed-sized region. If the code cache overflows, some methods are flushed from the cache to make

room for new compiled code; the flushed methods will be recompiled when next needed. Caching has the advantage

that only the working set of compiled code needs to exist in compiled form; all other methods exist only in the more

compact byte code form. This organization can actually save space over similar statically-compiled systems, since in

a statically-compiled system all compiled code must exist all the time, while in a dynamically-compiled system only

the more compact byte codes need be kept all the time.

On the other hand, a dynamically-compiled system that caches the results of compilation may incur more compilation

overhead than a dynamically-compiled system without caching (i.e., with a “cache” that only ever grows larger, never

flushing code unnecessarily) or a statically-compiled system (assuming that all compiled code will eventually be

needed). The size of the compiled code cache (and whether it is unbounded) is thus an important parameter to

controlling the behavior of a system based on dynamic compilation: too small a compiled code cache can lead to

excessive compilation overhead akin to thrashing, while too large a compiled code cache can lead to excessive paging

on systems with virtual memory. In the current SELF system, the compiled code cache is sized at about 4MB for

machine instructions (with additional space reserved for other information output by the compiler along with

instructions), which is enough to hold all the commonly-used compiled code for the prototype SELF user interface,

currently the largest SELF application.

8.2.3 LRU Cache Flushing Support

The current implementation of dynamic compilation and caching requires some support from the compiler to

implement the replacement algorithm used in the compiled code cache. To select the compiled method(s) to flush to

make room for new compiled methods, the code cache uses a least-recently-used (LRU) approximation strategy. Each

compiled method is allocated a word of memory, used to record whether the method has been used recently. At the

beginning of each compiled method, the compiled code must zero its word to mark the method as recently used. Partial

sweeps over the compiled code cache check which methods have been used recently (i.e., which have their words

zeroed), transferring this information to a separate, more compact data structure. After scanning, the examined words

are reset to non-zero to begin the next time interval. This clock-like LRU detection strategy imposes a small run-time

overhead to clear a word of memory at a fixed address on every method invocation.

8.3 Customization and Static Compilation

SELF can use customization without incurring a huge blow-up in compiled code space because the SELF compiler

relies on dynamic compilation to limit customization to those receiver type/source method combinations that actually

occur in practice. However, most object-oriented language implementations use traditional static compilation. In such

environments, customization would appear to become much less practical, since compiled versions of source methods

would have to be compiled “up front” for all possible receiver type/source method combinations, irrespective of

whether the combinations occur in practice.

Nevertheless, the Trellis/Owl system (described in section 3.2.3) automatically compiles customized versions of

methods for all inheriting subclasses statically. Trellis/Owl, like SELF, accesses instance variables via messages, and

66

consequently Trellis/Owl’s implementors developed a similar optimization to overcome the potential performance

problems. Their system includes several techniques that together apparently keep down the costs of static

customization. The Trellis/Owl compiler conserves space by generating a new compiled version of a method only

when it differs from the compiled code of its superclass’ version. This technique would solve the equalsString:

problem by having all non-string classes share the same compiled code for the default definition ofequalsString:.

Trellis/Owl also keeps compiled code space costs and compile time costs down by performing little optimization and

no inlining of methods or primitives; only messages to self accessing instance variables are inlined. Global variables

and constants are accessed directly, not by messages, so objects such as false can be accessed directly without

sending messages, unlike in SELF where false is accessed via a normal implicit-self message. Finally, Trellis/Owl

includes a suite of built-in control structures and special declarations to make it easier to compile code for common

types such as integers and booleans. We doubt that static customization would remain practical in an aggressively

optimizing system like SELF with a pure language model, although further research to verify this belief would be

useful.

8.4 Customization as Partial Evaluation

Customization can be viewed as a kind of partial evaluation (introduced in section 3.4.3): by customizing the compiler

partially-evaluates a source method with respect to the type of its receiver to produce a residual function (the

customized compiled code). Also like partial evaluation systems, the SELF compiler makes heavy use of type analysis

and inlining to optimize routines.

There are several important distinctions between the SELF compiler and partial evaluators. The SELF compiler

partially-evaluates (i.e., customizes) methods using type information extracted at run-time using dynamic compilation

without any user type or data declarations, while partial evaluation systems typically are given an extensive static

description of the input to the program over which the program is to be partially evaluated. Partial evaluators primarily

propagate constant information, while the SELF compiler typically propagates more general information such as the

representation-level types of expressions. Finally, partial evaluators typically unroll loops or inline recursive calls as

long as they can be “constant folded” away, and therefore do not terminate on non-terminating input programs, such

as programs containing errors that lead to infinite recursions. The SELF compiler must be more robust, compiling code

in a reasonable amount of time even for programs that contain errors. Accordingly, the SELF compiler does not unroll

loops arbitrarily (sacrificing some opportunities for optimization in the process), and its recursion detection rules

(described in section 7.1.2.2) are more elaborate than those found in most partial evaluators.

8.5 In-Line Caching

8.5.1 In-Line Caching and Customization

With customized methods, the message lookup system has the additional job of locating the particular customized

version of a source method that applies to the receiver type. Fortunately, this selection can be folded into in-line

caching for no additional run-time cost. Like the Deutsch-Schiffman Smalltalk-80 system (described in section 3.1.2),

the SELF system uses in-line caching to speed non-inlined message sends. In traditional in-line caching, the compiler

verifies the cached method by checking whether the receiver’s map is the same as it was when the method was cached

in-line. This check extends naturally to handle customized methods by instead verifying that the receiver’s map is the

one for which the method was customized. This test has the same hit rate as for traditional in-line caching, since if the

receiver’s map is the same as before then its map will be the one for which the method was customized, and vice versa.

The modified test also takes up less compiled-code space, since the cached receiver map no longer needs to be stored

in-line at the call site. Finally, the new check is faster to perform, since the cached last receiver map no longer needs

to be fetched from its in-line memory location (the required map value is now a compile-time constant embedded in

67

the instructions of the method’s prologue). The following SPARC instructions implement this check at the beginning

of methods invoked through dynamically-dispatched message sends:

• If customized for integer receivers:

andcc %receiver, #3 ; test low-order two bits for 00 integer tag
bz,a _hit
; instruction beginning rest of method prologue (in delay slot)

_miss:
sethi %hi(_InlineCacheMiss), %t ; call in-line cache miss handler
jmp [%t + %lo(_InlineCacheMiss)]

_hit:
; rest of method prologue

• If customized for floating point receivers:

andcc %receiver, #2 ; test second low-order bit for 10 float tag (cannot be mark (11))
bnz,a _hit
; instruction beginning rest of method prologue (in delay slot)

_miss:
sethi %hi(_InlineCacheMiss), %t ; call in-line cache miss handler
jmp [%t + %lo(_InlineCacheMiss)]

_hit:
; rest of method prologue

• If customized for other receivers:

andcc %receiver, #1 ; test low-order bit for 01 memory tag (cannot be a mark (11))
bnz,a _map_test
ld [%receiver + 3], %map ; load receiver’s map (in delay slot)

_miss:
sethi %hi(_InlineCacheMiss), %t ; call in-line cache miss handler
jmp [%t + %lo(_InlineCacheMiss)]

_map_test:
sethi %hi(<customized map constant>), %t ; load 32-bit map constant
add %t, %lo(<customized map constant>), %t
cmp %map, %t ; compare receiver’s map to customized map constant
beq,a _hit
; instruction beginning rest of method prologue (in delay slot)
ba,a _miss ; branch back to call of in-line cache miss handler

_hit:
; rest of method prologue

For messages that miss in the modified in-line cache, the compiled code table is consulted to find the appropriate

customized version of the target method. To support customization, the map of the receiver object is included in the

key that indexes into the table. If a version of the method with the right receiver map has not yet been compiled, then

the compiler is invoked to produce a new customized version, and the resulting version is added to the compiled code

table for future uses of the same source method with the same receiver type. The in-line cache is then backpatched

(i.e., overwritten) to call the newly-invoked method, so that future executions of the same message send will test the

most recently invoked method first.*

* After the bulk of the research reported in this dissertation was completed, Urs Hölzle and other members of the SELF group
designed and implemented an extension to normal in-line caching called polymorphic inline caching [HCU91]. Polymorphic
inline caches roughly act like dynamically-growing chains of normal “monomorphic” in-line caches, eventually increasing the
hit rate for a polymorphic inline cache to 100%. The performance data presented in Chapter 14 includes the improvements from
polymorphic inline caches.

68

8.5.2 In-Line Caching and Dynamic Inheritance

In the presence of dynamic inheritance, the outcome of method lookup depends on more than just the map of the

receiver: it also depends on the run-time contents of any assignable parent slots traversed by the lookup. Consequently,

the simple in-line cache receiver map check is insufficient to guarantee that the cached method is correct for the

receiver. One approach, used in an early SELF implementation, would simply disable in-line caching for messages

affected by dynamic inheritance; a full lookup would be performed for every message involving assignable parents.

Unfortunately, this approach places a severe run-time overhead on the use of dynamic inheritance.

The current SELF system extends in-line caching to also check the state of any assignable parents as part of checking

for an in-line cache hit. The compiler generates extra code in the method prologue after the receiver type check that

verifies the contents of any assignable parent slots. In most cases, the compiler only has to check the map of the

assignable parent against a statically-known constant; in some cases the compiler must check the parent object’s

identity (these cases relate to certain aspects of SELF inheritance rules that depend on the relative identities of objects

involved in the message lookup). If all assignable parents are correct for the cached method, then the in-line cache hits

and the body of the method is executed. Otherwise, the in-line cache misses and additional processing is needed to

resolve the miss, potentially involving a full message lookup.

This implementation of dynamic inheritance is much better than the simple approach of disabling in-line caching

altogether, but it is still not as fast as desired, since the presence of dynamic inheritance currently blocks compile-time

message lookup and message inlining. To make dynamic inheritance truly competitive in performance with messages

involving only static inheritance, the system would need to include some means of statically-binding and inlining

messages influenced by dynamic inheritance.

8.5.3 In-Line Caching and _Performs

In SELF, users may send a message whose name is a computed run-time value rather than a static compile-time string

using a _Perform primitive.* For example, the following SELF code could be used to implement the for loop

control structure more succinctly than the current way presented in section 7.2:

to: end By: step Do: block = (
step compare: 0

IfLess: [to: end By: step Sending: ‘>=’ Do: block]
Equal: [error: ‘step is zero in to:By:Do: loop’]
Greater: [to: end By: step Sending: ‘<=’ Do: block]).

to: end By: step Sending: name Do: block = (
“step either up or down from self to end”
| i |
i: self.
[i _Perform: name With: end] whileTrue: [
block value: i.
i: i + step.

]).

This version of the for loop control structure passes in the name of the message to be used to test whether the loop is

done.

To implement _Perform’ed messages efficiently, we generalize the notion of a message, and generalize the in-line

cache prologue to handle this more general kind of message. A general message involves a number of parameters that

control the message lookup, including the receiver’s map and the name of the message. Each of these parameters may

be either a compile-time constant or a run-time computed quantity. A normal message send is simply a special case of

this generalized message, with the message name a compile-time constant. For _Perform’s the message name may

be a run-time computed value. In addition, the receiver map, normally a run-time computed value, might be a compile-

time constant, for instance if the message has been statically-bound but not inlined (such as for a recursive call). The

generalized in-line cache is responsible for checking any run-time computed parameters to the message lookup that

are not guaranteed to be compile-time constants (and so already checked at compile-time), such as the receiver’s map

or the message name.

* Other variants of _Perform allow other aspects of the message lookup, such as the object with which to start the search, to be
computed and passed in as run-time values.

69

The compiler attempts to determine statically as many of the parameters to a message as possible, since the compiler

can generate better code if it knows more about the message. For example, if the compiler can infer the value of the

message name argument of the _Perform primitive statically, it replaces the _Perform primitive with a normal

message send, which the compiler then attempts to optimize further. In this way the compiler integrates the treatment

of normal messages and _Perform’ed messages, using the same kinds of techniques and run-time mechanisms to

improve the performance of both.

8.6 Future Work

A logical extension to our current system would be to customize on the types of arguments in addition to the type of

the receiver. There is no theoretical reason why customization should not apply to arguments in addition to the receiver,

and the performance of some programs likely would improve with argument customization. From a practical

standpoint, however, in a singly-dispatched language such as SELF the receiver is more important than the other

arguments, since message lookup depends on the type of the receiver but not on the types of the arguments.

Customizing on the receiver comes at no additional run-time cost, since in-line caching can handle customized

methods at least as easily as non-customized methods. In contrast, any argument customization would require

additional run-time checks in the method prologue. Whether argument customization pays off in practice depends on

whether the benefits of knowing the types of arguments outweigh the run-time costs associated with checking the types

of the customized arguments in method prologues and the costs in additional compiled code space. It seems likely that

a successful system would only customize on those arguments, if any, that received heavy use in the body of a method,

since customization on all arguments for all methods would almost surely lead to significant compiled-code space and

compilation time overheads.

Even though customization usually improves performance significantly without greatly increasing compiled code

space usage, customization may not be appropriate for all source methods. For some methods, the extra space cost

associated with customization may not be worth the improvement in run-time performance, either because the method

does not send messages to self often enough or because the method is called with many different receiver types. For

example, in the current SELF system, testing two arbitrary objects for equality is implemented using double

dispatching [Ing86]. The implementation of = for strings, for example, is the following:

traits string = (|
...
= anObject = (anObject equalsString: self).
equalsString: s = (
“both arguments are strings; now compare characters”

...).
...

|).*

If both arguments to = are strings, then the version of equalsString: for strings is called, which proceeds to

compare individual characters within the strings. If, however, the argument to = is not a string, then the default version

of equalsString: is called instead:

traits defaults = (|
...
equalsString: s = (false).
...

|).

This version just returns false, since a string is never equal to something that is not also a string. The compiler

generates a separate customized version of this method for all non-string receiver types compared against strings in

practice. Normally this would be a small set, but one SELF program iterated through all the objects in the heap

comparing them to a particular string; this program caused the compiler to generate a customized version of the default

equalsString: message for every non-string type in the system. Clearly a single shared version of this method

would be better. To prevent such pathological cases, we are investigating approaches in which the compiler can elect

not to customize methods where the costs of customization outweigh the benefits.

* This syntax is not precisely SELF syntax; we using a more intuitive syntax in this dissertation for pedagogical reasons.

70

8.7 Summary

The SELF compiler performs customization as one of its main techniques to improve performance. Customization

provides the compiler with precise static knowledge of the type of self, enabling it to statically-bind and inline

messages sent to self. These kinds of messages are extremely common in SELF, since instance variables and global

variables are accessed by sending messages to self rather than by special-purpose language mechanisms with limited

expressive power. Customization directly overcomes the performance disadvantages of SELF’s more expressive

approach, clearing the way for future languages to rely on messages for variable accesses without adverse performance

impact. By coupling customization with dynamic compilation, the space overhead for customization can be kept

reasonable. By coupling customization with in-line caching, no extra run-time work is required to select the right

customized version of an invoked source method.

